Penerapan Data Mining Menggunakan Algoritma C4.5 untuk Klasifikasi Penyakit Paru-Paru
DOI:
https://doi.org/10.61722/jipm.v3i5.1513Keywords:
Penyakit paru-paru, Data Mining, Klasifikasi, decision tree, C4.5Abstract
Lung disease remains one of the leading causes of morbidity and mortality in Indonesia. Factors such as smoking habits, unhealthy lifestyles, and low awareness of respiratory health have significantly contributed to the increasing prevalence of this condition. This study aims to classify lung health conditions using the Decision Tree C4.5 algorithm, a data mining technique widely applied in medical analysis. The dataset consists of 132 respondents with various attributes, including age, gender, smoking habits, sleep patterns, and medical history. The model was validated using the percentage split method, A total of 80% of the data was allocated for training the model, while the remaining 20% was used for testing its performance.The results show that the C4.5 algorithm successfully classified lung disease risk into two categories, “Yes” (at risk) and “No” (not at risk), with a high level of accuracy. The model effectively identified the key factors contributing to lung disease risk, such as smoking habits, late-night activity, age, and insurance ownership. These findings confirm that the Decision Tree C4.5 algorithm is a reliable and efficient tool for the early detection of respiratory diseases and can support data-driven decision-making in the healthcare field.
References
Budiyono, P. (2024). Penerapan algoritma Naïve Bayes untuk prediksi penyakit paru-paru. Jurnal Teknologi dan Sistem Informasi, 10(2), 55–62.
Christian, A., & Sumanto. (2025). Analisis machine learning untuk prediksi penyakit paru-paru menggunakan Random Forest. Jurnal Widya Informatika, 7(1), 45–53.
Han, J., Kamber, M., & Pei, J. (2012). Data mining: Concepts and techniques (3rd ed.). Waltham, MA: Morgan Kaufmann.
Kurniawan, D. (2024). Deteksi dan prediksi cerdas penyakit paru-paru dengan algoritma Random Forest. Jurnal Sains Komputer, 6(4), 101–108.
Meiyanti, A. (2020). Klasifikasi diagnosa penyakit paru-paru pada Klinik Raditya Medical Center dengan metode algoritma C4.5. Jurnal Teknologi dan Ilmu Komputer, 8(3), 12–19.
Pambudi, R. (2024). Klasifikasi penyakit paru-paru menggunakan metode Decision Tree. Jurnal Ilmiah Komputer dan Sistem Informasi, 12(4), 2397–2402.
Putri, N. S. D. (2023). Hubungan antara kebiasaan merokok terhadap tingkat keparahan penyakit paru obstruktif kronis (PPOK). Jurnal Kesehatan Respirasi, 5(2), 112–118.
Sholiha, A., & Fatah, Z. (2025). Klasifikasi penyakit paru-paru menggunakan data mining Decision Tree. JAMASTIKA, 4(1), 45–52.
Sofyan, F. M. A. (2023). Penerapan algoritma C4.5 untuk prediksi penyakit paru-paru menggunakan RapidMiner. Jurnal Sains Komputer dan Teknologi Informasi, 11(2), 247–254.
Sutoyo, I. (2018). Implementasi algoritma Decision Tree untuk klasifikasi data peserta didik. Jurnal Pilar Nusa Mandiri, 14(2), 217–223.
Witten, I. H., Frank, E., & Hall, M. A. (2011). Data mining: Practical machine learning tools and techniques (3rd ed.). Burlington, MA: Morgan Kaufmann.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 JURNAL ILMIAH PENELITIAN MAHASISWA

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.










