PENGARUH USER EXPERIENCE, ACCURACY OF RESPONSES, PERSONALIZATION USER ENGAGEMENT DAN RETENTION CHATGPT

Authors

  • Nadia Ulfah Zulkarnain Universitas Negeri Jakarta
  • Osly Usman Universitas Negeri Jakarta
  • Annisa Lutfia Universitas Negeri Jakarta

DOI:

https://doi.org/10.61722/jemba.v2i4.1213

Keywords:

Accuracy of Responses; ChatGPT; Personalization; User Engagement; User Retention

Abstract

This study aims to analyze the influence of user experience, accuracy of responses, and personalization on user engagement and its impact on user retention in the context of ChatGPT usage. A quantitative approach was employed by distributing questionnaires to 200 active ChatGPT users and analyzing the data using path analysis with the help of SmartPLS software. The results show that all three main variables—user experience, accuracy of responses, and personalization—have a positive and significant effect on user engagement. Furthermore, user engagement significantly affects user retention. These findings highlight that a positive user experience, accurate responses, and relevant personalization features are crucial in building user engagement and loyalty toward artificial intelligence-based systems such as ChatGPT.

References

Ayers, J., Wu, Y., Lan, W., & Liu, Q. (2023). Enhancing chatbot user retention through personalized responses and adaptive interaction design. International Journal of Human-Computer Interaction, 39(4), 278–293. https://doi.org/10.1080/10447318.2023.2145678

Chandra, A., Rachmawati, E., & Kurniawan, A. (2022). The effect of response accuracy and personalization on user satisfaction and engagement: A study on AI-based platforms. Jurnal Teknologi Informasi dan Komunikasi, 21(2), 87–95.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008

Ghozali, I. (2001). Aplikasi analisis multivariate dengan program SPSS. Semarang: Badan Penerbit Universitas Diponegoro.

Ghozali, I. (2004). Model persamaan struktural: Konsep dan aplikasi dengan program AMOS Ver.5.0. Semarang: Badan Penerbit Universitas Diponegoro.

Hadian, D., & Fikriah, S. (2023). Analisis faktor-faktor yang memengaruhi penerimaan teknologi berbasis AI: Pendekatan Technology Acceptance Model. Jurnal Sistem Informasi dan Teknologi, 12(1), 15–28.

Nasrul, A., Wulandari, M., & Salim, R. (2024). Evaluating user experience of generative AI chatbot using multi-dimensional UX metrics. Journal of Digital Interaction, 3(1), 44–56.

Nielsen, J., & Norman, D. (2020). The definition of user experience (UX). Nielsen Norman Group. https://www.nngroup.com/articles/definition-user-experience

Sauer, J., Seibel, K., & Rüttinger, B. (2020). The influence of usability, workload, and performance on user acceptance of intelligent systems. Ergonomics, 63(3), 287–298. https://doi.org/10.1080/00140139.2019.1682310

Seaborn, K. (2025). Towards a framework for evaluating AI-driven conversational agents: Balancing UX and trust. AI & Society, 40(1), 112–125.

Zhai, X. (2022). Factors influencing user satisfaction and loyalty of AI-based chat platforms. Computers in Human Behavior, 130, 107163. https://doi.org/10.1016/j.chb.2021.107163

Downloads

Published

2025-07-10

How to Cite

Ulfah Zulkarnain, N., Osly Usman, & Annisa Lutfia. (2025). PENGARUH USER EXPERIENCE, ACCURACY OF RESPONSES, PERSONALIZATION USER ENGAGEMENT DAN RETENTION CHATGPT. JURNAL ILMIAH EKONOMI, MANAJEMEN, BISNIS DAN AKUNTANSI, 2(4), 405–412. https://doi.org/10.61722/jemba.v2i4.1213

Issue

Section

Articles