ANALISIS LITERATUR PREDIKSI TREN PENJUALAN E-COMMERCE BERBASIS DATA TIME-SERIES: METODE STATISTIK & MACHINE LEARNING

Authors

  • Maya Rafika Utami Universitas Islam Negeri Sumatera Utara
  • Muhammad Irwan Padli Nasution Universitas Islam Negeri Sumatera Utara

DOI:

https://doi.org/10.61722/jipm.v3i2.844

Keywords:

E-commerce, Prediksi Tren Penjualan, Data Time-Series, Analisis Literature, Machine Learning

Abstract

The rapid development of the e-commerce industry in Indonesia has generated a huge amount of time-series sales data, creating a significant opportunity to predict sales trends. This study aims to analyze the existing literature on methods used to predict e-commerce sales trends by utilizing time-series data from databases. The analysis shows that various time-series techniques, such as ARIMA, LTSM, and hybrid models, have been applied with varying degrees of success. Factors such as data volume, data pattern complexity, and the need for real-time prediction play an important role in the selection and effectiveness of prediction methods. Overall, this study concludes that hybrid models and machine learning, especially LTSM, show great potential in improving the accuracy of sales trend prediction in the e-commerce domain.

References

Ikhlasul Akmal, R., Hekmatiar Ayyubi, R., & Hidayansyah, I. (2024). Analisis Peramalan Jumlah Pengguna E-Commerce Dengan Metode Time Series. JATI (Jurnal Mahasiswa Teknik Informatika), 8(4), 7674–7679. https://doi.org/10.36040/jati.v8i4.9898

Lubis, N., Harahap, A. Y., Tantawi, R., Aslami, N., Sitanggang, T. N., Samudra, U., Islam, U., Sumatera, N., & Indonesia, U. P. (n.d.). Dampak Perkembangan Ekonomi Digital terhadap Pertumbuhan Sektor E-Commerce di Indonesia : Perspektif. 348–359.

Noor, S., Naqvi, Z., Yfantidou, S., & Zi, E. (2017). Universi e libre de Bruxelles Advanced Databases Time Series Databases and InfluxDB. 000455274. http://cs.ulb.ac.be/public/_media/teaching/influxdb_2017.pdf

Pambudi, H. K., Kusuma, P. G. A., Yulianti, F., & Julian, K. A. (2020). Prediksi Status Pengiriman Barang Menggunakan Metode Machine Learning. Jurnal Ilmiah Teknologi Infomasi Terapan, 6(2), 100–109. https://doi.org/10.33197/jitter.vol6.iss2.2020.396

Pratama, A. S., Sari, S. M., Hj, M. F., Badwi, M., & Anshori, M. I. (2023). Pengaruh Artificial Intelligence, Big Data Dan Otomatisasi Terhadap Kinerja SDM Di Era Digital. Jurnal Publikasi Ilmu Manajemen (JUPIMAN), 2(4), 108–123.

Rahmadayanti, R., Susilo, B., & Puspitaningrum, D. (2015). Perbandingan Keakuratan Metode Autoregressive Integrated Moving Average Dan Exponential Smoothing Pada Peramalan Penjualan Semen Di PT Sinar Abadi. Jurnal Rekursif, 3(1), 23–36.

Ralahallo, B. A. B., & Muhrim, M. R. (2024). Dampak Strategi Pemasaran Digital Terhadap Pertumbuhan Bisnis E-Commerce Di Indonesia. HIPOTESA- Jurnal Ilmu-Ilmu Sosial, 18(1), 71–83.

Rowan, Muflikhah, L., & Cholissodin, I. (2022). Peramalan Kasus Positif COVID-19 di Jawa Timur menggunakan Metode Hybrid ARIMA-LSTM. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 6(9), 4146–4153. http://j-ptiik.ub.ac.id

Agusmawati, N. K et al., (2020). Prediksi Harga Emas Menggunakan Metode LSTM & GRU. JITET, 8(1), 32–36. https://doi.org/10.23960/jitet.v11i3.3250

Downloads

Published

2025-04-30

How to Cite

Maya Rafika Utami, & Muhammad Irwan Padli Nasution. (2025). ANALISIS LITERATUR PREDIKSI TREN PENJUALAN E-COMMERCE BERBASIS DATA TIME-SERIES: METODE STATISTIK & MACHINE LEARNING. JURNAL ILMIAH PENELITIAN MAHASISWA, 3(2), 331–339. https://doi.org/10.61722/jipm.v3i2.844

Issue

Section

##section.default.title##

Most read articles by the same author(s)