ANALISIS LITERATUR PREDIKSI TREN PENJUALAN E-COMMERCE BERBASIS DATA TIME-SERIES: METODE STATISTIK & MACHINE LEARNING
DOI:
https://doi.org/10.61722/jipm.v3i2.844Keywords:
E-commerce, Prediksi Tren Penjualan, Data Time-Series, Analisis Literature, Machine LearningAbstract
The rapid development of the e-commerce industry in Indonesia has generated a huge amount of time-series sales data, creating a significant opportunity to predict sales trends. This study aims to analyze the existing literature on methods used to predict e-commerce sales trends by utilizing time-series data from databases. The analysis shows that various time-series techniques, such as ARIMA, LTSM, and hybrid models, have been applied with varying degrees of success. Factors such as data volume, data pattern complexity, and the need for real-time prediction play an important role in the selection and effectiveness of prediction methods. Overall, this study concludes that hybrid models and machine learning, especially LTSM, show great potential in improving the accuracy of sales trend prediction in the e-commerce domain.
References
Ikhlasul Akmal, R., Hekmatiar Ayyubi, R., & Hidayansyah, I. (2024). Analisis Peramalan Jumlah Pengguna E-Commerce Dengan Metode Time Series. JATI (Jurnal Mahasiswa Teknik Informatika), 8(4), 7674–7679. https://doi.org/10.36040/jati.v8i4.9898
Lubis, N., Harahap, A. Y., Tantawi, R., Aslami, N., Sitanggang, T. N., Samudra, U., Islam, U., Sumatera, N., & Indonesia, U. P. (n.d.). Dampak Perkembangan Ekonomi Digital terhadap Pertumbuhan Sektor E-Commerce di Indonesia : Perspektif. 348–359.
Noor, S., Naqvi, Z., Yfantidou, S., & Zi, E. (2017). Universi e libre de Bruxelles Advanced Databases Time Series Databases and InfluxDB. 000455274. http://cs.ulb.ac.be/public/_media/teaching/influxdb_2017.pdf
Pambudi, H. K., Kusuma, P. G. A., Yulianti, F., & Julian, K. A. (2020). Prediksi Status Pengiriman Barang Menggunakan Metode Machine Learning. Jurnal Ilmiah Teknologi Infomasi Terapan, 6(2), 100–109. https://doi.org/10.33197/jitter.vol6.iss2.2020.396
Pratama, A. S., Sari, S. M., Hj, M. F., Badwi, M., & Anshori, M. I. (2023). Pengaruh Artificial Intelligence, Big Data Dan Otomatisasi Terhadap Kinerja SDM Di Era Digital. Jurnal Publikasi Ilmu Manajemen (JUPIMAN), 2(4), 108–123.
Rahmadayanti, R., Susilo, B., & Puspitaningrum, D. (2015). Perbandingan Keakuratan Metode Autoregressive Integrated Moving Average Dan Exponential Smoothing Pada Peramalan Penjualan Semen Di PT Sinar Abadi. Jurnal Rekursif, 3(1), 23–36.
Ralahallo, B. A. B., & Muhrim, M. R. (2024). Dampak Strategi Pemasaran Digital Terhadap Pertumbuhan Bisnis E-Commerce Di Indonesia. HIPOTESA- Jurnal Ilmu-Ilmu Sosial, 18(1), 71–83.
Rowan, Muflikhah, L., & Cholissodin, I. (2022). Peramalan Kasus Positif COVID-19 di Jawa Timur menggunakan Metode Hybrid ARIMA-LSTM. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 6(9), 4146–4153. http://j-ptiik.ub.ac.id
Agusmawati, N. K et al., (2020). Prediksi Harga Emas Menggunakan Metode LSTM & GRU. JITET, 8(1), 32–36. https://doi.org/10.23960/jitet.v11i3.3250
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 JURNAL ILMIAH PENELITIAN MAHASISWA

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.